CUDA device에서 제공하는 메모리의 종류는 다음과 같다.
Local memory 와 Global memory는 그래픽 카드의 비디오 메모리(통상 512MB / 1기가 이런식으로 말하는)에 존재하고
Shared memory는 GPU 내의 Multi-Processor에 통합되어있다.
Devicequery를 비교하면서 보자면
8800GT 512MB 짜리에서
Global memory와 Local memory는 512MB 까지 가능하며
Shared memory는 블럭당 16KB 까지 가능하다.
예제로 들어있는 행렬곱 예제에서
shared memory를 사용하고 사용하지 않는 차이점은 아래의 그림처럼
Global memory에 직접 한 바이트씩 읽어서 계산하는지
아니면 global memory의 블럭을
shared memory로 일정 영역만(블럭 사이즈 만큼) 복사해서 계산을 하는지의 차이점이 있다.
다른 책에 의하면 global memory는 700~900 cuda clock에 읽어오고
shared memory는 거의 1 cuda clock에 읽어 온다고 하니
되도록이면 shared memory에 복사해서 더욱 빠르게 연산하는게 유리하다고 한다.
5.3.2 Device Memory Accesses .................................................................... 70
5.3.2.1 Global Memory ............................................................................ 70
5.3.2.2 Local Memory .............................................................................. 72
5.3.2.3 Shared Memory ........................................................................... 72
5.3.2.4 Constant Memory ........................................................................ 73
5.3.2.5 Texture and Surface Memory ........................................................ 73 [출처 : CUDA C Programming guide.pdf] |
Local memory 와 Global memory는 그래픽 카드의 비디오 메모리(통상 512MB / 1기가 이런식으로 말하는)에 존재하고
Shared memory는 GPU 내의 Multi-Processor에 통합되어있다.
Devicequery를 비교하면서 보자면
8800GT 512MB 짜리에서
Global memory와 Local memory는 512MB 까지 가능하며
Shared memory는 블럭당 16KB 까지 가능하다.
Device 0: "GeForce 8800 GT" CUDA Driver Version: 3.20 CUDA Runtime Version: 3.10 CUDA Capability Major revision number: 1 CUDA Capability Minor revision number: 1 Total amount of global memory: 536543232 bytes Number of multiprocessors: 14 Number of cores: 112 Total amount of constant memory: 65536 bytes Total amount of shared memory per block: 16384 bytes Total number of registers available per block: 8192 Warp size: 32 Maximum number of threads per block: 512 Maximum sizes of each dimension of a block: 512 x 512 x 64 Maximum sizes of each dimension of a grid: 65535 x 65535 x 1 2011/01/02 - [Programming/openCL / CUDA] - deviceQuery on 8600GT 512MB + CUDA 하드웨어 구조 |
예제로 들어있는 행렬곱 예제에서
shared memory를 사용하고 사용하지 않는 차이점은 아래의 그림처럼
Global memory에 직접 한 바이트씩 읽어서 계산하는지
아니면 global memory의 블럭을
shared memory로 일정 영역만(블럭 사이즈 만큼) 복사해서 계산을 하는지의 차이점이 있다.
다른 책에 의하면 global memory는 700~900 cuda clock에 읽어오고
shared memory는 거의 1 cuda clock에 읽어 온다고 하니
되도록이면 shared memory에 복사해서 더욱 빠르게 연산하는게 유리하다고 한다.
// Matrices are stored in row-major order:
// M(row, col) = *(M.elements + row * M.width + col)
typedef struct {
int width;
int height;
float* elements;
} Matrix;
// Thread block size
#define BLOCK_SIZE 16
// Forward declaration of the matrix multiplication kernel
__global__ void MatMulKernel(const Matrix, const Matrix, Matrix);
// Matrix multiplication - Host code
// Matrix dimensions are assumed to be multiples of BLOCK_SIZE
void MatMul(const Matrix A, const Matrix B, Matrix C)
{
// Load A and B to device memory
Matrix d_A;
d_A.width = A.width; d_A.height = A.height;
size_t size = A.width * A.height * sizeof(float);
cudaMalloc(&d_A.elements, size);
cudaMemcpy(d_A.elements, A.elements, size,
cudaMemcpyHostToDevice);
Matrix d_B;
d_B.width = B.width; d_B.height = B.height;
size = B.width * B.height * sizeof(float);
cudaMalloc(&d_B.elements, size);
cudaMemcpy(d_B.elements, B.elements, size,
cudaMemcpyHostToDevice);
// Allocate C in device memory
Matrix d_C;
d_C.width = C.width; d_C.height = C.height;
size = C.width * C.height * sizeof(float);
cudaMalloc(&d_C.elements, size);
// Invoke kernel
dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);
dim3 dimGrid(B.width / dimBlock.x, A.height / dimBlock.y);
MatMulKernel<<<dimGrid, dimBlock>>>(d_A, d_B, d_C);
// Read C from device memory
cudaMemcpy(C.elements, Cd.elements, size,
cudaMemcpyDeviceToHost);
// Free device memory
cudaFree(d_A.elements);
cudaFree(d_B.elements);
cudaFree(d_C.elements);
}
// Matrix multiplication kernel called by MatMul()
__global__ void MatMulKernel(Matrix A, Matrix B, Matrix C)
{
// Each thread computes one element of C
// by accumulating results into Cvalue
float Cvalue = 0;
int row = blockIdx.y * blockDim.y + threadIdx.y;
int col = blockIdx.x * blockDim.x + threadIdx.x;
for (int e = 0; e < A.width; ++e)
Cvalue += A.elements[row * A.width + e]
* B.elements[e * B.width + col];
C.elements[row * C.width + col] = Cvalue;
} |
// Matrices are stored in row-major order:
// M(row, col) = *(M.elements + row * M.stride + col)
typedef struct {
int width;
int height;
int stride;
float* elements;
} Matrix;
// Get a matrix element
__device__ float GetElement(const Matrix A, int row, int col)
{
return A.elements[row * A.stride + col];
}
// Set a matrix element
__device__ void SetElement(Matrix A, int row, int col,
float value)
{
A.elements[row * A.stride + col] = value;
}
// Get the BLOCK_SIZExBLOCK_SIZE sub-matrix Asub of A that is
// located col sub-matrices to the right and row sub-matrices down
// from the upper-left corner of A
__device__ Matrix GetSubMatrix(Matrix A, int row, int col)
{
Matrix Asub;
Asub.width = BLOCK_SIZE;
Asub.height = BLOCK_SIZE;
Asub.stride = A.stride;
Asub.elements = &A.elements[A.stride * BLOCK_SIZE * row
+ BLOCK_SIZE * col];
return Asub;
}
// Thread block size
#define BLOCK_SIZE 16
// Forward declaration of the matrix multiplication kernel
__global__ void MatMulKernel(const Matrix, const Matrix, Matrix);
// Matrix multiplication - Host code
// Matrix dimensions are assumed to be multiples of BLOCK_SIZE
void MatMul(const Matrix A, const Matrix B, Matrix C)
{
// Load A and B to device memory
Matrix d_A;
d_A.width = d_A.stride = A.width; d_A.height = A.height;
size_t size = A.width * A.height * sizeof(float);
cudaMalloc(&d_A.elements, size);
cudaMemcpy(d_A.elements, A.elements, size,
cudaMemcpyHostToDevice);
Matrix d_B;
d_B.width = d_B.stride = B.width; d_B.height = B.height;
size = B.width * B.height * sizeof(float);
cudaMalloc(&d_B.elements, size);
cudaMemcpy(d_B.elements, B.elements, size,
cudaMemcpyHostToDevice);
// Allocate C in device memory
Matrix d_C;
d_C.width = d_C.stride = C.width; d_C.height = C.height;
size = C.width * C.height * sizeof(float);
cudaMalloc(&d_C.elements, size);
// Invoke kernel
dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);
dim3 dimGrid(B.width / dimBlock.x, A.height / dimBlock.y);
MatMulKernel<<<dimGrid, dimBlock>>>(d_A, d_B, d_C);
// Read C from device memory
cudaMemcpy(C.elements, d_C.elements, size,
cudaMemcpyDeviceToHost);
// Free device memory
cudaFree(d_A.elements);
cudaFree(d_B.elements);
cudaFree(d_C.elements);
}
// Matrix multiplication kernel called by MatMul()
__global__ void MatMulKernel(Matrix A, Matrix B, Matrix C)
{
// Block row and column
int blockRow = blockIdx.y;
int blockCol = blockIdx.x;
// Each thread block computes one sub-matrix Csub of C
Matrix Csub = GetSubMatrix(C, blockRow, blockCol);
// Each thread computes one element of Csub
// by accumulating results into Cvalue
float Cvalue = 0;
// Thread row and column within Csub
int row = threadIdx.y;
int col = threadIdx.x;
// Loop over all the sub-matrices of A and B that are
// required to compute Csub
// Multiply each pair of sub-matrices together
// and accumulate the results
for (int m = 0; m < (A.width / BLOCK_SIZE); ++m) {
// Get sub-matrix Asub of A
Matrix Asub = GetSubMatrix(A, blockRow, m);
// Get sub-matrix Bsub of B
Matrix Bsub = GetSubMatrix(B, m, blockCol);
// Shared memory used to store Asub and Bsub respectively
__shared__ float As[BLOCK_SIZE][BLOCK_SIZE];
__shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];
// Load Asub and Bsub from device memory to shared memory
// Each thread loads one element of each sub-matrix
As[row][col] = GetElement(Asub, row, col);
Bs[row][col] = GetElement(Bsub, row, col);
// Synchronize to make sure the sub-matrices are loaded
// before starting the computation
__syncthreads();
// Multiply Asub and Bsub together
for (int e = 0; e < BLOCK_SIZE; ++e)
Cvalue += As[row][e] * Bs[e][col];
// Synchronize to make sure that the preceding
// computation is done before loading two new
// sub-matrices of A and B in the next iteration
__syncthreads();
}
// Write Csub to device memory
// Each thread writes one element
SetElement(Csub, row, col, Cvalue);
}
|
'Programming > openCL & CUDA' 카테고리의 다른 글
cuda 5 preview (0) | 2012.06.02 |
---|---|
nvidia ion cuda core와 h.264 library (0) | 2012.05.22 |
Interoperability (상호운용성) (0) | 2012.05.04 |
cuda 내장변수 (0) | 2012.04.30 |
kernel block 과 thread (0) | 2012.04.26 |