deb 패키지로 지원을 해서 한번 깔아 보는데 엌ㅋㅋㅋ
run으로 설치시에는 /usr/local/cuda-5.5 에
deb 패키지 설치시에는 /usr/local/cuda에 설치된다. (32bit 기준)
[링크 : http://docs.nvidia.com/cuda/cuda-getting-started-guide-for-linux/index.html]
일단.. 설치된건 cuda repo 이니.. 추가로 cuda-dev와 cuda-doc을 설치 해봐야징..
샘플 파일을 위해서는 run 파일로 설치해야 할듯..
그리고 샘플은 ${HOME}에 저장된다.
왜!!! 우분투에서 샘플 코드 까진 관리를 안해주는거야 ㅠㅠ
run으로 설치시에는 /usr/local/cuda-5.5 에
Install the CUDA 5.5 Toolkit? ((y)es/(n)o/(q)uit): n
Install the CUDA 5.5 Samples? ((y)es/(n)o/(q)uit): y
Enter CUDA Samples Location [ default is /home/minimonk/NVIDIA_CUDA-5.5_Samples ]:
Enter Toolkit Location [ default is /usr/local/cuda-5.5 ]: |
[링크 : http://docs.nvidia.com/cuda/cuda-getting-started-guide-for-linux/index.html]
일단.. 설치된건 cuda repo 이니.. 추가로 cuda-dev와 cuda-doc을 설치 해봐야징..
$ sudo apt-cache search cuda
boinc-nvidia-cuda - metapackage for CUDA-savvy BOINC client and manager
libthrust-dev - Thrust - C++ template library for CUDA
pyrit - GPGPU-driven WPA/WPA2-PSK key cracker
python-pytools - big bag of things supplementing Python standard library
suricata - Next Generation Intrusion Detection and Prevention Tool
libcublas4 - NVIDIA CUDA BLAS runtime library
libcudart4 - NVIDIA CUDA runtime library
libcufft4 - NVIDIA CUDA FFT runtime library
libcurand4 - NVIDIA CUDA Random Numbers Generation runtime library
libcusparse4 - NVIDIA CUDA Sparse Matrix runtime library
libnpp4 - NVIDIA Performance Primitives runtime library
nvidia-compute-profiler - NVIDIA Compute Visual Profiler
nvidia-cuda-dev - NVIDIA CUDA development files
nvidia-cuda-doc - NVIDIA CUDA and OpenCL documentation
nvidia-cuda-gdb - NVIDIA CUDA GDB
nvidia-cuda-toolkit - NVIDIA CUDA toolkit
nvidia-304 - NVIDIA binary Xorg driver, kernel module and VDPAU library
nvidia-304-updates - NVIDIA binary Xorg driver, kernel module and VDPAU library
nvidia-319 - NVIDIA binary Xorg driver, kernel module and VDPAU library
nvidia-319-updates - NVIDIA binary Xorg driver, kernel module and VDPAU library
python-pycuda - Python module to access Nvidia‘s CUDA parallel computation API
python-pycuda-doc - module to access Nvidia‘s CUDA parallel computation API (documentation)
python-pycuda-headers - headers for Python module to access Nvidia‘s CUDA parallel computation API
cuda-repo-ubuntu1204 - CUDA repo configuration files. |
$ sudo apt-get install nvidia-cuda-dev nvidia-cuda-doc
패키지 목록을 읽는 중입니다... 완료
의존성 트리를 만드는 중입니다
상태 정보를 읽는 중입니다... 완료
다음 패키지를 더 설치할 것입니다:
cpp-4.4 g++-4.4 gcc-4.4 gcc-4.4-base libcublas4 libcudart4 libcufft4 libcurand4 libcusparse4
libnpp4 libqtassistantclient4 libstdc++6-4.4-dev libthrust-dev libvdpau-dev
nvidia-compute-profiler nvidia-cuda-gdb nvidia-cuda-toolkit nvidia-opencl-dev opencl-headers
제안하는 패키지:
gcc-4.4-locales g++-4.4-multilib gcc-4.4-doc libstdc++6-4.4-dbg gcc-4.4-multilib
libmudflap0-4.4-dev libgcc1-dbg libgomp1-dbg libmudflap0-dbg libcloog-ppl0 libppl-c2 libppl7
libstdc++6-4.4-doc libvdpau-doc
다음 새 패키지를 설치할 것입니다:
cpp-4.4 g++-4.4 gcc-4.4 gcc-4.4-base libcublas4 libcudart4 libcufft4 libcurand4 libcusparse4
libnpp4 libqtassistantclient4 libstdc++6-4.4-dev libthrust-dev libvdpau-dev
nvidia-compute-profiler nvidia-cuda-dev nvidia-cuda-doc nvidia-cuda-gdb nvidia-cuda-toolkit
nvidia-opencl-dev opencl-headers
0개 업그레이드, 21개 새로 설치, 0개 제거 및 4개 업그레이드 안 함.
142 M바이트 아카이브를 받아야 합니다.
이 작업 후 467 M바이트의 디스크 공간을 더 사용하게 됩니다.
계속 하시겠습니까 [Y/n]? |
샘플 파일을 위해서는 run 파일로 설치해야 할듯..
그리고 샘플은 ${HOME}에 저장된다.
$ sudo ./cuda_5.5.22_linux_32.run
NVIDIA CUDA General Terms
-------------------------
The Software may collect non-personally identifiable
information for the purposes of customizing information
delivered to you and improving future versions of the
Software. Such information, including IP address and system
configuration, will only be collected on an anonymous basis
and cannot be linked to any personally identifiable
information. Personally identifiable information such as your
username or hostname is not collected.
-------------------------------------------------------------
Do you accept the previously read EULA? (accept/decline/quit): accept
Install NVIDIA Accelerated Graphics Driver for Linux-x86 319.37? ((y)es/(n)o/(q)uit): y
Install the CUDA 5.5 Toolkit? ((y)es/(n)o/(q)uit): y
Enter Toolkit Location [ default is /usr/local/cuda-5.5 ]:
Install the CUDA 5.5 Samples? ((y)es/(n)o/(q)uit): y
Enter CUDA Samples Location [ default is /home/minimonk/NVIDIA_CUDA-5.5_Samples ]:
Installing the NVIDIA display driver...
Installing the CUDA Toolkit in /usr/local/cuda-5.5 ...
Installing the CUDA Samples in /home/minimonk/NVIDIA_CUDA-5.5_Samples ...
Copying samples to /home/minimonk/NVIDIA_CUDA-5.5_Samples/NVIDIA_CUDA-5.5_Samples now...
Finished copying samples.
===========
= Summary =
===========
Driver: Installed
Toolkit: Installed in /usr/local/cuda-5.5
Samples: Installed in /home/minimonk/NVIDIA_CUDA-5.5_Samples
* Please make sure your PATH includes /usr/local/cuda-5.5/bin
* Please make sure your LD_LIBRARY_PATH
* for 32-bit Linux distributions includes /usr/local/cuda-5.5/lib
* for 64-bit Linux distributions includes /usr/local/cuda-5.5/lib64:/lib
* OR
* for 32-bit Linux distributions add /usr/local/cuda-5.5/lib
* for 64-bit Linux distributions add /usr/local/cuda-5.5/lib64 and /lib
* to /etc/ld.so.conf and run ldconfig as root
* To uninstall CUDA, remove the CUDA files in /usr/local/cuda-5.5
* Installation Complete
Please see CUDA_Getting_Started_Linux.pdf in /usr/local/cuda-5.5/doc/pdf for detailed information on setting up CUDA.
Logfile is /tmp/cuda_install_5918.log
|
왜!!! 우분투에서 샘플 코드 까진 관리를 안해주는거야 ㅠㅠ
'Programming > openCL & CUDA' 카테고리의 다른 글
cuda on windows 7 (0) | 2014.01.06 |
---|---|
cuda / cpu 테스트 드라이브 (0) | 2014.01.06 |
cuda 5.5 (0) | 2014.01.06 |
CUDA Capability별 기능차이 (0) | 2013.02.17 |
Nvidia GTX 시리즈별 코드네임 (0) | 2013.02.17 |