embeded/jetson2022. 4. 7. 15:36
Posted by 구차니
embeded/jetson2022. 4. 6. 18:32

약자에 대한 테이블 없나..

 

[링크 : https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/bootflow_jetson_xavier.html#]

 

Jetson Nano Development Module (P3448-0000) Flashed to Micro SD Card

NameTypeAlloc PolicyFS TypeSizeFS AttributeAlloc AttributeReservedFilenameDescription
GP1
GP1
sequential
basic
2097152
0
8
0 %
 
Required. Contains primary GPT of the sdcard device. All partitions defined after this entry are configured in the kernel, and are accessible by standard partition tools such as gdisk and parted.
APP
data
sequential
basic
APPSIZE
0
0x8
0 %
APPFILE
Required. Contains the rootfs. This partition must be defined after primary_GPT so that it can be accessed as the fixed known special device /dev/mmcblk0p1.
TXC
TBCTYPE
sequential
basic
131072
0
8
0 %
TBCFILE
Required. Contains TegraBoot CPU-side binary.
RP1
data
sequential
basic
458752
0
0x8
0 %
DTBFILE
Required. Contains Bootloader DTB binary.
EBT
bootloader
sequential
basic
589824
0
8
0 %
EBTFILE
Required. Contains CBoot, the final boot stage CPU bootloader binary that loads the binary in the kernel partition..
WX0
WB0TYPE
sequential
basic
65536
0
8
0 %
WB0FILE
Required. Contains warm boot binary.
BXF
data
sequential
basic
196608
0
8
0 %
BPFFILE
Required. Contains SC7 entry firmware.
BXF-DTB
data
sequential
basic
393216
0
8
0 %
BPFDTB-FILE
Optional. Reserved for future use by BPMP DTB binary; can't remove.
FX
FBTYPE
sequential
basic
65536
0
0x8
0 %
FBFILE
Optional. Reserved for fuse bypass; removeable.
TXS
data
sequential
basic
458752
0
8
0 %
TOSFILE
Required. Contains TOS binary.
DXB
data
sequential
basic
458752
0
0x8
0 %
DTBFILE
Required. Contains kernel DTB binary.
LNX
data
sequential
basic
786432
0
0x8
0 %
LNXFILE
Required. Contains U-Boot, which loads and launches the kernel from the rootfs at /boot.
EXS
data
sequential
basic
65536
0
8
0 %
EKSFILE
Optional. Contains the encrypted keys.
BMP
data
sequential
basic
81920
0
0x8
0 %
bmp.blob
Optional. Contains BMP images for splash screen display during boot.
RP4
data
sequential
basic
131072
0
0x8
0 %
rp4.blob
Required. Contains XUSB module’s firmware file, making XUSB a true USB 3.0 compliant host controller.
GPT
GPT
sequential
basic
2097152
0
8
0 %
 
Required. Contains secondary GPT of the sdcard device.

[링크 : https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra Linux Driver Package Development Guide/part_config.html#]

 

+

22.04.07

BootROM (BR) 
Boot Configuration Table (BCT)
bootloader (BL)

[링크 : https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/bootflow_jetson_nano.html#wwpID0E02B0HA]


boot-file-set (BFS)
kernel-file-set (KFS) 
[링크 : https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/bootloader_update_nano_tx1.html]


EKB or EKS: Encrypted keyblob, an encrypted blob which holds developer-defined content
[링크 : https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/trusty.html]

1.Boot partitions, which are used in the boot process, and are visible only to Bootloader.
Many of the boot partitions have redundant copy partitions. The copy partitions must have the same names as their primaries with the suffix ‘‑1’. For example, the NVC partition’s copy must be named NVC‑1.
The boot partitions are:
•BCT, which contains redundant instances of the Boot Configuration Table. This must be the first partition on the boot device.
•NVC contains TegraBoot. This must be the second boot partition. The following boot partitions, PT through SPF, are part of the BFS.
•PT contains layout information for each BFS, and indicates the beginning of each one. It is the first partition in the BFS.
•TBC contains the TegraBoot CPU-side binary.
•RP1 contains TegraBoot DTBs.
•EBT contains CBoot.
•WB0 contains the warm boot binary.
•BPF contains BPMP microcode.
•NVC‑1 contains a copy of NVC.
•PT‑1 through BPF‑1 are copy partitions for the primaries NVC through BPF, making up a copy of the BFS, denoted BFS‑1.
•PAD is an empty partition which ensures the VER and VER_b are at the very end of the boot partition.
•VER_b contains additional version information for redundancy and version checking.
•VER contains version information.
2.GP1 contains the sdmmc_user device’s primary GPT. All partitions defined after this one are configured in the Linux kernel, and are accessible by standard partition tools such as gdisk and parted.
3.User partitions, which have a variety of uses. Some of them may be deleted, and/or may be mounted and used to store application files.
The following partitions constitute the kernel-file-set (KFS), and have redundant copy partitions:
•DTB contains kernel DTBs.
•TOS contains the trusted OS binary.
•EKS is optional, and is reserved for future use.
•LNX contains either the Linux kernel or U-Boot, depending on your choice of DFLT_KERNEL_IMAGE in the configuration file.
•DTB‑1 through EKS‑1 constitute a copy of the primary KFS, denoted KFS‑1.
•Other partitions, such as APP and BMP, are outside the scope of this document. For information about these partitions, see the appropriate subsection for your Jetson platform in Default Partition Overview.
Kernel-file-set (KFS)

[링크 : https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/bootloader_update_nano_tx1.html#]

'embeded > jetson' 카테고리의 다른 글

nvidia jetson deepstream objectDetector_SSD 실행 스크립트 분석  (0) 2022.04.13
jetson / armv8 EL  (0) 2022.04.07
jetson nano 부팅이 안됨  (0) 2022.04.06
deepstream triton server  (0) 2022.03.30
deepstream part.3  (0) 2022.03.29
Posted by 구차니
embeded/jetson2022. 4. 6. 15:07

월요일까지 잘 쓰던 녀석인데 수요일에 켜려니 안되서 멘붕

다른 SD 메모리 밀고 이미지 구워도 안켜져서 멘붕

젯슨 많이 다뤄보신분에게 여쭤보니 sdk manager를 통해서 밀어 버리지 않으면 복구 안된다고..

그러면.. jetson 보드 자체, SD 카드가 아닌 영역에도 먼가 손을 대는건가?

 

[0000.125] [L4T TegraBoot] (version 00.00.2018.01-l4t-8728f3cb)
[0000.130] Processing in cold boot mode Bootloader 2
[0000.135] A02 Bootrom Patch rev = 1023
[0000.138] Power-up reason: pmc por
[0000.141] No Battery Present
[0000.144] pmic max77620 reset reason
[0000.147] pmic max77620 NVERC : 0x40
[0000.151] RamCode = 0
[0000.153] Platform has DDR4 type RAM
[0000.156] max77620 disabling SD1 Remote Sense
[0000.161] Setting DDR voltage to 1125mv
[0000.165] Serial Number of Pmic Max77663: 0x291ae2
[0000.172] Entering ramdump check
[0000.175] Get RamDumpCarveOut = 0x0
[0000.179] RamDumpCarveOut=0x0,  RamDumperFlag=0xe59ff3f8
[0000.184] Last reboot was clean, booting normally!
[0000.188] Sdram initialization is successful
[0000.192] SecureOs Carveout Base=0x00000000ff800000 Size=0x00800000
[0000.199] Lp0 Carveout Base=0x00000000ff780000 Size=0x00001000
[0000.204] BpmpFw Carveout Base=0x00000000ff700000 Size=0x00080000
[0000.210] GSC1 Carveout Base=0x00000000ff600000 Size=0x00100000
[0000.216] GSC2 Carveout Base=0x00000000ff500000 Size=0x00100000
[0000.222] GSC4 Carveout Base=0x00000000ff400000 Size=0x00100000
[0000.228] GSC5 Carveout Base=0x00000000ff300000 Size=0x00100000
[0000.234] GSC3 Carveout Base=0x000000017f300000 Size=0x00d00000
[0000.250] RamDump Carveout Base=0x00000000ff280000 Size=0x00080000
[0000.256] Platform-DebugCarveout: 0
[0000.259] Nck Carveout Base=0x00000000ff080000 Size=0x00200000
[0000.265] Non secure mode, and RB not enabled.
[0000.269] BoardID = 3448, SKU = 0x0
[0000.272] QSPI-ONLY: SkipQspiOnlyFlag = 0
[0000.276] Nano-SD: checking PT table on QSPI ...
[0000.281] Initialize FailControl
[0000.284] Read PT from (2:0)
[0000.314] PT crc32 and magic check passed.
[0000.318] Using BFS PT to query partitions
[0000.324] Loading Tboot-CPU binary
[0000.352] Verifying TBC in OdmNonSecureSBK mode
[0000.362] Bootloader load address is 0xa0000000, entry address is 0xa0000258
[0000.369] Bootloader downloaded successfully.
[0000.373] Downloaded Tboot-CPU binary to 0xa0000258
[0000.378] MAX77620_GPIO5 configured
[0000.381] CPU power rail is up
[0000.384] CPU clock enabled
[0000.388] Performing RAM repair
[0000.391] Updating A64 Warmreset Address to 0xa00002e9
[0000.396] BoardID = 3448, SKU = 0x0
[0000.399] QSPI-ONLY: SkipQspiOnlyFlag = 0
[0000.403] Nano-SD: checking PT table on QSPI ...
[0000.407] NvTbootFailControlDoFailover: No failover; Continuing ...
[0000.413] Loading NvTbootBootloaderDTB
[0000.480] Verifying NvTbootBootloaderDTB in OdmNonSecureSBK mode
[0000.549] Bootloader DTB Load Address: 0x83000000
[0000.554] BoardID = 3448, SKU = 0x0
[0000.557] QSPI-ONLY: SkipQspiOnlyFlag = 0
[0000.561] Nano-SD: checking PT table on QSPI ...
[0000.565] NvTbootFailControlDoFailover: No failover; Continuing ...
[0000.571] Loading NvTbootKernelDTB
[0000.637] Verifying NvTbootKernelDTB in OdmNonSecureSBK mode
[0000.660] Verification of NvTbootKernelDTB failed!
[0000.665] NvTbootKernelDTB partition is corrupted!
[0000.669] *** Set to failover in the next boot ***
[0000.674] NvTbootFailControlSetClobber:
[0000.678] *** Rebooting ***

 

+ 22.04.07

jetson nano sd 정상부팅 로그

비교해보니 "Verification of NvTbootKernelDTB failed!" 에러가 나면서 무한 리부팅 걸린 듯.

그런데 image로 구으면.. DTB 파티션 안쓰나?

[0000.125] [L4T TegraBoot] (version 00.00.2018.01-l4t-8728f3cb)
[0000.130] Processing in cold boot mode Bootloader 2
[0000.135] A02 Bootrom Patch rev = 1023
[0000.138] Power-up reason: pmc por
[0000.141] No Battery Present
[0000.144] pmic max77620 reset reason
[0000.147] pmic max77620 NVERC : 0x40
[0000.151] RamCode = 0
[0000.153] Platform has DDR4 type RAM
[0000.156] max77620 disabling SD1 Remote Sense
[0000.161] Setting DDR voltage to 1125mv
[0000.165] Serial Number of Pmic Max77663: 0x291ae2
[0000.172] Entering ramdump check
[0000.175] Get RamDumpCarveOut = 0x0
[0000.179] RamDumpCarveOut=0x0,  RamDumperFlag=0xe59ff3f8
[0000.184] Last reboot was clean, booting normally!
[0000.188] Sdram initialization is successful
[0000.192] SecureOs Carveout Base=0x00000000ff800000 Size=0x00800000
[0000.199] Lp0 Carveout Base=0x00000000ff780000 Size=0x00001000
[0000.204] BpmpFw Carveout Base=0x00000000ff700000 Size=0x00080000
[0000.210] GSC1 Carveout Base=0x00000000ff600000 Size=0x00100000
[0000.216] GSC2 Carveout Base=0x00000000ff500000 Size=0x00100000
[0000.222] GSC4 Carveout Base=0x00000000ff400000 Size=0x00100000
[0000.228] GSC5 Carveout Base=0x00000000ff300000 Size=0x00100000
[0000.234] GSC3 Carveout Base=0x000000017f300000 Size=0x00d00000
[0000.250] RamDump Carveout Base=0x00000000ff280000 Size=0x00080000
[0000.256] Platform-DebugCarveout: 0
[0000.259] Nck Carveout Base=0x00000000ff080000 Size=0x00200000
[0000.265] Non secure mode, and RB not enabled.
[0000.269] BoardID = 3448, SKU = 0x0
[0000.272] QSPI-ONLY: SkipQspiOnlyFlag = 0
[0000.276] Nano-SD: checking PT table on QSPI ...
[0000.281] Initialize FailControl
[0000.284] Read PT from (2:0)
[0000.314] PT crc32 and magic check passed.
[0000.318] Using BFS PT to query partitions
[0000.324] Loading Tboot-CPU binary
[0000.352] Verifying TBC in OdmNonSecureSBK mode
[0000.362] Bootloader load address is 0xa0000000, entry address is 0xa0000258
[0000.369] Bootloader downloaded successfully.
[0000.373] Downloaded Tboot-CPU binary to 0xa0000258
[0000.378] MAX77620_GPIO5 configured
[0000.381] CPU power rail is up
[0000.384] CPU clock enabled
[0000.388] Performing RAM repair
[0000.391] Updating A64 Warmreset Address to 0xa00002e9
[0000.396] BoardID = 3448, SKU = 0x0
[0000.399] QSPI-ONLY: SkipQspiOnlyFlag = 0
[0000.403] Nano-SD: checking PT table on QSPI ...
[0000.407] NvTbootFailControlDoFailover: No failover; Continuing ...
[0000.413] Loading NvTbootBootloaderDTB
[0000.480] Verifying NvTbootBootloaderDTB in OdmNonSecureSBK mode
[0000.549] Bootloader DTB Load Address: 0x83000000
[0000.554] BoardID = 3448, SKU = 0x0
[0000.557] QSPI-ONLY: SkipQspiOnlyFlag = 0
[0000.561] Nano-SD: checking PT table on QSPI ...
[0000.565] NvTbootFailControlDoFailover: No failover; Continuing ...
[0000.571] Loading NvTbootKernelDTB
[0000.637] Verifying NvTbootKernelDTB in OdmNonSecureSBK mode
[0000.706] Kernel DTB Load Address: 0x83100000
[0000.710] BoardID = 3448, SKU = 0x0
[0000.714] QSPI-ONLY: SkipQspiOnlyFlag = 0
[0000.717] Nano-SD: checking PT table on QSPI ...
[0000.722] NvTbootFailControlDoFailover: No failover; Continuing ...
[0000.730] Loading cboot binary
[0000.845] Verifying EBT in OdmNonSecureSBK mode
[0000.887] Bootloader load address is 0x92c00000, entry address is 0x92c00258
[0000.894] Bootloader downloaded successfully.
[0000.898] BoardID = 3448, SKU = 0x0
[0000.901] QSPI-ONLY: SkipQspiOnlyFlag = 0
[0000.905] Nano-SD: checking PT table on QSPI ...
[0000.910] NvTbootFailControlDoFailover: No failover; Continuing ...
[0000.916] PT: Partition NCT NOT found !
[0000.920] Warning: Find Partition via PT Failed
[0000.924] Next binary entry address: 0x92c00258
[0000.928] BoardId: 3448
[0000.933] Overriding pmu board id with proc board id
[0000.938] Display board id is not available
[0000.942] BoardID = 3448, SKU = 0x0
[0000.945] QSPI-ONLY: SkipQspiOnlyFlag = 0
[0000.949] Nano-SD: checking PT table on QSPI ...
[0000.953] NvTbootFailControlDoFailover: No failover; Continuing ...
[0001.060] Verifying SC7EntryFw in OdmNonSecureSBK mode
[0001.115] /bpmp deleted
[0001.117] SC7EntryFw header found loaded at 0xff700000
[0001.311] OVR2 PMIC
[0001.313] Bpmp FW successfully loaded
[0001.316] BoardID = 3448, SKU = 0x0
[0001.320] QSPI-ONLY: SkipQspiOnlyFlag = 0
[0001.323] Nano-SD: checking PT table on QSPI ...
[0001.328] NvTbootFailControlDoFailover: No failover; Continuing ...
[0001.335] WB0 init successfully at 0xff780000
[0001.339] Verifying NvTbootWb0 in OdmNonSecureSBK mode
[0001.344] Set NvDecSticky Bits
[0001.348] GSC2 address ff53fffc value c0edbbcc
[0001.354] GSC MC Settings done
[0001.357] BoardID = 3448, SKU = 0x0
[0001.360] QSPI-ONLY: SkipQspiOnlyFlag = 0
[0001.364] Nano-SD: checking PT table on QSPI ...
[0001.368] NvTbootFailControlDoFailover: No failover; Continuing ...
[0001.375] TOS Image length 53680
[0001.378]  Monitor size 53680
[0001.381]  OS size 0
[0001.396] Secure Os AES-CMAC Verification Success!
[0001.401] TOS image cipher info: plaintext
[0001.405] Loading and Validation of Secure OS Successful
[0001.421] SC7 Entry Firmware - 0xff700000, 0x4000
[0001.425] NvTbootPackSdramParams: start.
[0001.430] NvTbootPackSdramParams: done.
[0001.434] Tegraboot started after 51854 us
[0001.438] Basic modules init took 931208 us
[0001.442] Sec Bootdevice Read Time = 12 ms, Read Size = 61 KB
[0001.448] Sec Bootdevice Write Time = 0 ms, Write Size = 0 KB
[0001.453] Next stage binary read took 102860 us
[0001.457] Carveout took -132464 us
[0001.461] CPU initialization took 515446 us
[0001.465] Total time taken by TegraBoot 1417050 us

[0001.469] Starting CPU & Halting co-processor

64NOTICE:  BL31: v1.3(release):b5eeb33
NOTICE:  BL31: Built : 08:56:32, Feb 19 2022
ERROR:   Error initializing runtime service trusty_fast

 

1번핀 위치 잘 보고 꽂아야 함.

아무생각없이 꽂아서 PMIC_SYS_RST 가 연결되면 전원 LED에 불도 안들어 온다.

 

[링크 : https://www.mouser.com/pdfDocs/Jetson_Nano_Developer_Kit_User_Guide.pdf]

 

아래 명령어들로 인해서 cboot, EBT, SBK 키 등이 다르게 설정되면서

SD 메모리 부팅이 정상적으로 진행되는거 아닐까?

15:57:09 INFO: Flash Jetson Nano - flash: *** Flashing target device started. ***
15:57:09 INFO: Flash Jetson Nano - flash: [ 0.0047 ] tegrasign --getmode mode.txt --key None
15:57:09 INFO: Flash Jetson Nano - flash: [ 0.0190 ] RCM 1 is saved as rcm_1.rcm
15:57:09 INFO: Flash Jetson Nano - flash: [ 0.0757 ] Assuming zero filled SBK key
15:57:09 INFO: Flash Jetson Nano - flash: [ 0.1716 ] tegrabct --bct P3448_A00_lpddr4_204Mhz_P987.cfg --chip 0x21 0
15:57:09 INFO: Flash Jetson Nano - flash: [ 0.1847 ] tegrabct --bct P3448_A00_lpddr4_204Mhz_P987.bct --chip 0x21 0 --updatedevparam flash.xml.bin
15:57:09 INFO: Flash Jetson Nano - flash: [ 0.1942 ] tegraparser --pt flash.xml.bin --chip 0x21 0 --updatecustinfo P3448_A00_lpddr4_204Mhz_P987.bct
15:57:09 INFO: Flash Jetson Nano - flash: [ 0.2350 ] RCM version 0X210001
15:57:10 INFO: Flash Jetson Nano - flash: [ 1.2474 ] tegrarcm --download bct P3448_A00_lpddr4_204Mhz_P987.bct
15:57:10 INFO: Flash Jetson Nano - flash: [ 1.2547 ] [...] 100%
15:57:10 INFO: Flash Jetson Nano - flash: [ 1.4867 ] tegrahost --chip 0x21 --align cboot.bin
15:57:10 INFO: Flash Jetson Nano - flash: [ 1.4955 ] tegrahost --magicid EBT --appendsigheader cboot.bin cboot.bin_blheader
15:57:10 INFO: Flash Jetson Nano - flash: [ 1.5437 ] Assuming zero filled SBK key
15:57:10 INFO: Flash Jetson Nano - flash: [ 1.5577 ] tegrahost --updatesigheader tegra210-p3448-0000-p3449-0000-a02.dtb_blheader.encrypt tegra210-p3448-0000-p3449-0000-a02.dtb_blheader.hash zerosbk
15:57:10 INFO: Flash Jetson Nano - flash: [ 1.5704 ] Sending ebt
15:57:11 INFO: Flash Jetson Nano - flash: [ 1.5706 ] [...] 100%
15:57:11 INFO: Flash Jetson Nano - flash: [ 1.6794 ] Sending rp1
15:57:11 INFO: Flash Jetson Nano - flash: [ 1.6833 ] [...] 100%
15:57:11 INFO: Flash Jetson Nano - flash: [ 1.7451 ] Applet version 00.01.0000
15:57:11 INFO: Flash Jetson Nano - flash: [ 1.7561 ] tegrarcm --oem platformdetails storage storage_info.bin
15:57:11 INFO: Flash Jetson Nano - flash: [ 2.4503 ] [...] 100%
15:57:26 INFO: Flash Jetson Nano - flash: [ 2.4576 ] Writing partition PT with crc-flash.xml.bin
15:57:26 INFO: Flash Jetson Nano - flash: [ 17.2106 ] [...] 100%
15:57:30 INFO: Flash Jetson Nano - flash: [ 17.2180 ] Writing partition NVC with nvtboot.bin.encrypt
15:57:30 INFO: Flash Jetson Nano - flash: [ 21.1299 ] [...] 100%
15:57:40 INFO: Flash Jetson Nano - flash: [ 21.1431 ] Writing partition NVC_R with nvtboot.bin.encrypt
15:57:40 INFO: Flash Jetson Nano - flash: [ 31.1584 ] [...] 100%
15:57:50 INFO: Flash Jetson Nano - flash: [ 31.1746 ] Writing partition TBC with nvtboot_cpu.bin.encrypt
15:57:50 INFO: Flash Jetson Nano - flash: [ 41.1998 ] [...] 100%
15:57:54 INFO: Flash Jetson Nano - flash: [ 41.2121 ] Writing partition RP1 with kernel_tegra210-p3448-0000-p3449-0000-a02.dtb.encrypt
15:57:54 INFO: Flash Jetson Nano - flash: [ 45.3820 ] [...] 100%
15:58:08 INFO: Flash Jetson Nano - flash: [ 45.3993 ] Writing partition EBT with cboot.bin.encrypt
15:58:08 INFO: Flash Jetson Nano - flash: [ 59.3284 ] [...] 100%
15:58:37 INFO: Flash Jetson Nano - flash: [ 59.3567 ] Writing partition WB0 with warmboot.bin.encrypt
15:58:37 INFO: Flash Jetson Nano - flash: [ 88.4141 ] [...] 100%
15:58:38 INFO: Flash Jetson Nano - flash: [ 88.4254 ] Writing partition BPF with sc7entry-firmware.bin.encrypt
15:58:38 INFO: Flash Jetson Nano - flash: [ 88.6887 ] [...] 100%
15:58:38 INFO: Flash Jetson Nano - flash: [ 88.7003 ] Writing partition TOS with tos-mon-only.img.encrypt
15:58:38 INFO: Flash Jetson Nano - flash: [ 88.9647 ] [...] 100%
15:58:41 INFO: Flash Jetson Nano - flash: [ 88.9777 ] Writing partition DTB with kernel_tegra210-p3448-0000-p3449-0000-a02.dtb.encrypt
15:58:41 INFO: Flash Jetson Nano - flash: [ 92.4136 ] [...] 100%
15:58:55 INFO: Flash Jetson Nano - flash: [ 92.4320 ] Writing partition LNX with boot.img.encrypt
15:58:55 INFO: Flash Jetson Nano - flash: [ 106.3609 ] [...] 100%
15:59:35 INFO: Flash Jetson Nano - flash: [ 146.1933 ] Writing partition EKS with eks.img
15:59:35 INFO: Flash Jetson Nano - flash: [ 146.1946 ] [...] 100%
15:59:35 INFO: Flash Jetson Nano - flash: [ 146.2034 ] Writing partition BMP with bmp.blob
15:59:35 INFO: Flash Jetson Nano - flash: [ 146.4667 ] [...] 100%
15:59:44 INFO: Flash Jetson Nano - flash: [ 146.4847 ] Writing partition RP4 with rp4.blob
15:59:44 INFO: Flash Jetson Nano - flash: [ 155.5340 ] [...] 100%
15:59:52 INFO: Flash Jetson Nano - flash: [ 155.5537 ] Writing partition VER_b with qspi_bootblob_ver.txt
15:59:52 INFO: Flash Jetson Nano - flash: [ 163.3820 ] [...] 100%
15:59:53 INFO: Flash Jetson Nano - flash: [ 163.3969 ] Writing partition VER with qspi_bootblob_ver.txt
15:59:53 INFO: Flash Jetson Nano - flash: [ 163.6605 ] [...] 100%
15:59:53 INFO: Flash Jetson Nano - flash: [ 163.6712 ] Writing partition APP with system.img
100%
16:09:26 INFO: Flash Jetson Nano - flash: [ 736.6352 ] tegradevflash --write BCT P3448_A00_lpddr4_204Mhz_P987.bct
16:09:26 INFO: Flash Jetson Nano - flash: [ 736.6451 ] [...] 100%
16:09:32 INFO: Flash Jetson Nano - flash: [ 743.3077 ] tegradevflash --reboot coldboot
16:09:32 INFO: Flash Jetson Nano - flash: [ 743.3115 ] Cboot version 00.01.0000
16:09:34 INFO: Flash Jetson Nano - flash: [ 743.3184 ]
16:09:54 INFO: Flash Jetson Nano - flash: [ Component Install Finished Successfully ]
16:09:54 INFO: Flash Jetson Nano - flash: command finished successfully
16:09:54 SUMMARY: Flash Jetson Nano - flash: Install completed successfully.
16:12:05 INFO: Exactly one NVIDIA device detected, as expected.
16:12:05 INFO: Start to check if if default ip avaliable in ip addr
16:12:05 DEBUG: running command < true >
16:12:05 INFO: exec_command: true
16:12:05 INFO: command finished successfully
16:12:05 DEBUG: running command < ip addr | grep 192.168.55.1 >
16:12:05 INFO: exec_command: ip addr | grep 192.168.55.1
16:12:05 INFO: command finished successfully
16:12:05 INFO: Validated default ip avaliable.
16:12:05 INFO: Start to check if ip and ssh up with customize ip...
16:12:05 DEBUG: running command < true >
16:12:05 INFO: command finished successfully
16:12:05 DEBUG: running command < nc -z -vv -w 5 192.168.55.1 22 >
16:12:05 DEBUG: command terminated with error

 

+

~/nvidia/nvidia_sdk/JetPack_4.6.1_Linux_JETSON_NANO_TARGETS/Linux_for_Tegra/bootloader$ ls -al tegra*
-rw-r--r-- 1 root     root      229792  4월  6 15:57 tegra210-p3448-0000-p3449-0000-a02.dtb
-rwxrwxr-x 1 minimonk minimonk  959237  2월 20 02:04 tegrabct
-rwxrwxr-x 1 minimonk minimonk  922636  2월 20 02:04 tegradevflash
-rwxrwxr-x 1 minimonk minimonk   50627  2월 20 02:04 tegraflash.py
-rwxrwxr-x 1 minimonk minimonk  163998  2월 20 02:04 tegraflash_internal.py
-rwxrwxr-x 1 minimonk minimonk  912826  2월 20 02:04 tegrahost
-rwxrwxr-x 1 minimonk minimonk 2539744  2월 20 02:04 tegraopenssl
-rwxrwxr-x 1 minimonk minimonk  917258  2월 20 02:04 tegraparser
-rwxrwxr-x 1 minimonk minimonk  931472  2월 20 02:04 tegrarcm
-rwxrwxr-x 1 minimonk minimonk 1092265  2월 20 02:04 tegrasign
-rwxrwxr-x 1 minimonk minimonk   10349  2월 20 02:04 tegrasign_v3.py
-rwxrwxr-x 1 minimonk minimonk   33127  2월 20 02:04 tegrasign_v3_internal.py
-rwxrwxr-x 1 minimonk minimonk    7830  2월 20 02:04 tegrasign_v3_util.py

 

 

+ 22.04.07

 

Have you made any changes to device tree? If not, then likely you will need to reflash the unit (NvTboot is a very early stage in boot, long before Linux is ever reached). If you have an SD card for rootfs you could save a copy of that. Note that where some of this content is found differs between QSPI memory and the SD card depending on release. I can’t say much more which is useful, but if you do need more help, then knowing the release used on this unit and any flash history would help whoever answers.

[링크 : https://forums.developer.nvidia.com/t/jetson-nano-4gb-is-not-booting-suddenly/198991]

[링크 : https://forums.developer.nvidia.com/t/flashing-just-dtb-on-28-2-and-tx1/62007/3]

'embeded > jetson' 카테고리의 다른 글

jetson / armv8 EL  (0) 2022.04.07
nvidia jetson partition table  (0) 2022.04.06
deepstream triton server  (0) 2022.03.30
deepstream part.3  (0) 2022.03.29
deepstream onnx part.2  (0) 2022.03.29
Posted by 구차니
embeded/jetson2022. 3. 30. 21:49

이 한줄이 참.. 많은 문제를 낳는구만.. -_-

$ gst-launch-1.0 nvinferserver
ERROR: pipeline could not be constructed: no element "nvinferserver".

 

왜 안되나 했는데 native하게 까는건 없는지 멀 하려고 하면 다 막히고, 걍 docker로 ㄱㄱ -_-

Can Gst-nvinfereserver (DeepSream Triton plugin) run on Nano platform?
Yes. But due to Nano’s memory limitation, performance of certain models is slow and even run into OOM (out of memory) issues, specifically on heavy Tensorflow models. There is an option to run CPU instance for certain models on Nano. For more details, see samples/configs/deepstream-app-triton/README

[링크 : https://docs.nvidia.com/metropolis/deepstream/dev-guide/text/DS_FAQ.html]

[링크 : https://docs.nvidia.com/metropolis/deepstream/dev-guide/text/DS_plugin_gst-nvinferserver.html]

 

어느쪽 말이 맞는거냐 -_-

[링크 : https://docs.nvidia.com/metropolis/deepstream/dev-guide/text/DS_plugin_gst-nvinferserver.html]

 

일단 실행은 이렇게 하면 되려나.. ds l4t 인지 ds triton으로 해야할지 모르겠네

$ sudo docker run --rm -it nvcr.io/nvidia/deepstream-l4t:6.0-samples /bin/bash

[링크 : https://medium.com/@Smartcow_ai/building-arm64-based-docker-containers-for-nvidia-jetson-devices-on-an-x86-based-host-d72cfa535786]

 

하나가 되면 하나가 안되고 아놔 ㅋㅋㅋ

$ sudo docker image ls
REPOSITORY                      TAG            IMAGE ID       CREATED       SIZE
nvcr.io/nvidia/deepstream       6.0.1-triton   ac5f4c456b5b   5 weeks ago   17.5GB
nvcr.io/nvidia/deepstream-l4t   6.0.1-triton   d3984db2b6b1   6 weeks ago   3.98GB

$ sudo docker run --rm -it d3984db2b6b1 /bin/bash
root@d30ca855a6ce:/opt/nvidia/deepstream/deepstream-6.0# gst-inspect-1.0 nvinferserver

(gst-plugin-scanner:12): GStreamer-WARNING **: 01:40:47.344: Failed to load plugin '/usr/lib/aarch64-linux-gnu/gstreamer-1.0/deepstream/libnvdsgst_osd.so': libnvbufsurface.so.1.0.0: cannot open shared object file: No such file or directory

(gst-plugin-scanner:12): GStreamer-WARNING **: 01:40:47.378: Failed to load plugin '/usr/lib/aarch64-linux-gnu/gstreamer-1.0/deepstream/libnvdsgst_inferaudio.so': libcufft.so.10: cannot open shared object file: No such file or directory

(gst-plugin-scanner:12): GStreamer-WARNING **: 01:40:47.454: Failed to load plugin '/usr/lib/aarch64-linux-gnu/gstreamer-1.0/deepstream/libnvdsgst_deepstream_bins.so': libnvdsbufferpool.so.1.0.0: cannot open shared object file: No such file or directory

(gst-plugin-scanner:12): GStreamer-WARNING **: 01:40:47.456: Failed to load plugin '/usr/lib/aarch64-linux-gnu/gstreamer-1.0/deepstream/libgstnvvideoconvert.so': libnvdsbufferpool.so.1.0.0: cannot open shared object file: No such file or directory

(gst-plugin-scanner:12): GStreamer-WARNING **: 01:40:47.477: Failed to load plugin '/usr/lib/aarch64-linux-gnu/gstreamer-1.0/deepstream/libnvdsgst_preprocess.so': libnvbufsurface.so.1.0.0: cannot open shared object file: No such file or directory

(gst-plugin-scanner:12): GStreamer-WARNING **: 01:40:47.479: Failed to load plugin '/usr/lib/aarch64-linux-gnu/gstreamer-1.0/deepstream/libnvdsgst_infer.so': libnvbufsurface.so.1.0.0: cannot open shared object file: No such file or directory

(gst-plugin-scanner:12): GStreamer-WARNING **: 01:40:47.490: Failed to load plugin '/usr/lib/aarch64-linux-gnu/gstreamer-1.0/deepstream/libnvdsgst_multistream.so': libnvbufsurface.so.1.0.0: cannot open shared object file: No such file or directory

(gst-plugin-scanner:12): GStreamer-WARNING **: 01:40:47.499: Failed to load plugin '/usr/lib/aarch64-linux-gnu/gstreamer-1.0/deepstream/libnvdsgst_ofvisual.so': libnvdsbufferpool.so.1.0.0: cannot open shared object file: No such file or directory

(gst-plugin-scanner:12): GStreamer-WARNING **: 01:40:47.508: Failed to load plugin '/usr/lib/aarch64-linux-gnu/gstreamer-1.0/deepstream/libnvdsgst_dsexample.so': libnvbufsurface.so.1.0.0: cannot open shared object file: No such file or directory

(gst-plugin-scanner:12): GStreamer-WARNING **: 01:40:47.511: Failed to load plugin '/usr/lib/aarch64-linux-gnu/gstreamer-1.0/deepstream/libnvdsgst_tracker.so': libnvbufsurface.so.1.0.0: cannot open shared object file: No such file or directory

(gst-plugin-scanner:12): GStreamer-WARNING **: 01:40:47.543: Failed to load plugin '/usr/lib/aarch64-linux-gnu/gstreamer-1.0/deepstream/libnvdsgst_segvisual.so': libnvdsbufferpool.so.1.0.0: cannot open shared object file: No such file or directory

(gst-plugin-scanner:12): GStreamer-WARNING **: 01:40:47.619: Failed to load plugin '/usr/lib/aarch64-linux-gnu/gstreamer-1.0/deepstream/libnvdsgst_inferserver.so': libnvbufsurface.so.1.0.0: cannot open shared object file: No such file or directory

(gst-plugin-scanner:12): GStreamer-WARNING **: 01:40:47.638: Failed to load plugin '/usr/lib/aarch64-linux-gnu/gstreamer-1.0/deepstream/libcustom2d_preprocess.so': libnvbufsurftransform.so.1.0.0: cannot open shared object file: No such file or directory

(gst-plugin-scanner:12): GStreamer-WARNING **: 01:40:47.660: Failed to load plugin '/usr/lib/aarch64-linux-gnu/gstreamer-1.0/deepstream/libnvdsgst_udp.so': librivermax.so.0: cannot open shared object file: No such file or directory

(gst-plugin-scanner:12): GStreamer-WARNING **: 01:40:47.664: Failed to load plugin '/usr/lib/aarch64-linux-gnu/gstreamer-1.0/deepstream/libnvdsgst_dewarper.so': libnvdsbufferpool.so.1.0.0: cannot open shared object file: No such file or directory

(gst-plugin-scanner:12): GStreamer-WARNING **: 01:40:47.667: Failed to load plugin '/usr/lib/aarch64-linux-gnu/gstreamer-1.0/deepstream/libnvdsgst_multistreamtiler.so': libnvbufsurface.so.1.0.0: cannot open shared object file: No such file or directory
No such element or plugin 'nvinferserver'

 

에라이 -_-

$ sudo docker image list
REPOSITORY                      TAG            IMAGE ID       CREATED       SIZE
nvcr.io/nvidia/deepstream       6.0.1-triton   ac5f4c456b5b   5 weeks ago   17.5GB
nvcr.io/nvidia/deepstream-l4t   6.0.1-triton   d3984db2b6b1   6 weeks ago   3.98GB

$ sudo docker run --rm -it ac5f4c456b5b /bin/bash
WARNING: The requested image's platform (linux/amd64) does not match the detected host platform (linux/arm64/v8) and no specific platform was requested
standard_init_linux.go:228: exec user process caused: exec format error

 

Building Jetson Containers on an x86 workstation (using qemu)

[링크 : https://github.com/NVIDIA/nvidia-docker/wiki/NVIDIA-Container-Runtime-on-Jetson]

 

+

[링크 : https://blog.ml6.eu/nvidia-deepstream-quickstart-9147dd49a15d]

 

+

deb로 깔아도 install을 해주어야 하는것인가!!!

$ cd /opt/nvidia/deepstream/deepstream-6.0
$ sudo ./install.sh
$ sudo ldconfig

[링크 : https://docs.nvidia.com/metropolis/deepstream/dev-guide/text/DS_Quickstart.html#jetson-setup]

 

 

$ gst-inspect-1.0 nvinferserver
Factory Details:
  Rank                     primary (256)
  Long-name                NvInferServer plugin
  Klass                    NvInferServer Plugin
  Description              Nvidia DeepStreamSDK TensorRT plugin
  Author                   NVIDIA Corporation. Deepstream for Tesla forum: https://devtalk.nvidia.com/default/board/209

Plugin Details:
  Name                     nvdsgst_inferserver
  Description              NVIDIA DeepStreamSDK TensorRT Inference Server plugin
  Filename                 /usr/lib/aarch64-linux-gnu/gstreamer-1.0/deepstream/libnvdsgst_inferserver.so
  Version                  6.0.0
  License                  Proprietary
  Source module            nvinferserver
  Binary package           NVIDIA DeepStreamSDK TensorRT Inference Server plugin
  Origin URL               http://nvidia.com/

GObject
 +----GInitiallyUnowned
       +----GstObject
             +----GstElement
                   +----GstBaseTransform
                         +----GstNvInferServer

Pad Templates:
  SRC template: 'src'
    Availability: Always
    Capabilities:
      video/x-raw(memory:NVMM)
                 format: { (string)NV12, (string)RGBA }
                  width: [ 1, 2147483647 ]
                 height: [ 1, 2147483647 ]
              framerate: [ 0/1, 2147483647/1 ]

  SINK template: 'sink'
    Availability: Always
    Capabilities:
      video/x-raw(memory:NVMM)
                 format: { (string)NV12, (string)RGBA }
                  width: [ 1, 2147483647 ]
                 height: [ 1, 2147483647 ]
              framerate: [ 0/1, 2147483647/1 ]

Element has no clocking capabilities.
Element has no URI handling capabilities.

Pads:
  SINK: 'sink'
    Pad Template: 'sink'
  SRC: 'src'
    Pad Template: 'src'

Element Properties:
  name                : The name of the object
                        flags: readable, writable
                        String. Default: "nvinferserver0"
  parent              : The parent of the object
                        flags: readable, writable
                        Object of type "GstObject"
  qos                 : Handle Quality-of-Service events
                        flags: readable, writable
                        Boolean. Default: false
  unique-id           : Unique ID for the element. Can be used to identify output of the element
                        flags: readable, writable, changeable only in NULL or READY state
                        Unsigned Integer. Range: 0 - 4294967295 Default: 0
  process-mode        : Inferserver processing mode, (0):None, (1)FullFrame, (2)ClipObject
                        flags: readable, writable, changeable only in NULL or READY state
                        Unsigned Integer. Range: 0 - 2 Default: 0
  config-file-path    : Path to the configuration file for this instance of nvinferserver
                        flags: readable, writable, changeable in NULL, READY, PAUSED or PLAYING state
                        String. Default: ""
  batch-size          : Maximum batch size for inference
                        flags: readable, writable, changeable only in NULL or READY state
                        Unsigned Integer. Range: 0 - 1024 Default: 0
  infer-on-gie-id     : Infer on metadata generated by GIE with this unique ID.
                        Set to -1 to infer on all metadata.
                        flags: readable, writable, changeable only in NULL or READY state
                        Integer. Range: -1 - 2147483647 Default: -1
  infer-on-class-ids  : Operate on objects with specified class ids
                        Use string with values of class ids in ClassID (int) to set the property.
                         e.g. 0:2:3
                        flags: readable, writable, changeable only in NULL or READY state
                        String. Default: ""
  interval            : Specifies number of consecutive batches to be skipped for inference
                        flags: readable, writable, changeable only in NULL or READY state
                        Unsigned Integer. Range: 0 - 2147483647 Default: 0
  raw-output-generated-callback: Pointer to the raw output generated callback funtion
                        (type: gst_nvinfer_server_raw_output_generated_callback in 'gstnvdsinfer.h')
                        flags: readable, writable, changeable only in NULL or READY state
                        Pointer.
  raw-output-generated-userdata: Pointer to the userdata to be supplied with raw output generated callback
                        flags: readable, writable, changeable only in NULL or READY state
                        Pointer.

'embeded > jetson' 카테고리의 다른 글

nvidia jetson partition table  (0) 2022.04.06
jetson nano 부팅이 안됨  (0) 2022.04.06
deepstream part.3  (0) 2022.03.29
deepstream onnx part.2  (0) 2022.03.29
jetson nano python numpy Illegal instruction (core dumped)  (0) 2022.03.29
Posted by 구차니
embeded/jetson2022. 3. 29. 16:02

 

[링크 : https://github.com/NVIDIA-AI-IOT/deepstream_python_apps]

[링크 : https://github.com/NVIDIA-AI-IOT/deepstream_python_apps/tree/master/apps/deepstream-ssd-parser]

 

 

----

tritonserver for jetson (build)

[링크 : https://github.com/triton-inference-server/server/blob/main/docs/jetson.md]

 

+

[ 50%] Building CXX object CMakeFiles/triton-core.dir/backend_model_instance.cc.o
In file included from /home/jetson/work/server/build/_deps/repo-core-src/src/backend_model_instance.cc:37:0:
/home/jetson/work/server/build/_deps/repo-core-src/src/metrics.h:40:10: fatal error: dcgm_agent.h: No such file or directory
 #include <dcgm_agent.h>
          ^~~~~~~~~~~~~~
compilation terminated.

[링크 : https://github.com/NVIDIA/gpu-monitoring-tools/tree/master/bindings/go/dcgm]

  [링크 : https://github.com/NVIDIA/gpu-monitoring-tools]

 

pytorch 다운로드 경로

[링크 : https://jstar0525.tistory.com/171]

 

Known Issues
Triton PIP wheels for ARM SBSA are not available from PyPI and pip will install an incorrect Jetson version of Triton for ARM SBSA. The correct wheel file can be pulled directly from the ARM SBSA SDK image and manually installed.

[링크 : https://github.com/triton-inference-server/server/releases]

 

$ sudo docker pull nvcr.io/nvidia/tritonserver:21.11-py3-sdk

[링크 : https://zhuanlan.zhihu.com/p/471291236]

'embeded > jetson' 카테고리의 다른 글

jetson nano 부팅이 안됨  (0) 2022.04.06
deepstream triton server  (0) 2022.03.30
deepstream onnx part.2  (0) 2022.03.29
jetson nano python numpy Illegal instruction (core dumped)  (0) 2022.03.29
deepstream onnx  (0) 2022.03.28
Posted by 구차니
embeded/jetson2022. 3. 29. 11:32

생각해보니 deepstream onnx  github프로젝트의 경우

tiny_yolov2를 기반으로 작동하도록 libnvdsinfer_custom_bbox_tiny_yolo.so 를 생성했으니

ssd 와는 구조가 달라 당연히(?) 맞지 않으니 에러가 발생하고 죽는 듯.

[링크 : https://github.com/thatbrguy/Deep-Stream-ONNX]

 

ERROR: [TRT]: 2: [pluginV2DynamicExtRunner.cpp::execute::115] Error Code 2: Internal Error (Assertion status == kSTATUS_SUCCESS failed.)
ERROR: Build engine failed from config file
ERROR: failed to build trt engine.
0:08:17.537206102  9070     0x3f617730 ERROR                nvinfer gstnvinfer.cpp:632:gst_nvinfer_logger:<primary_gie> NvDsInferContext[UID 1]: Error in NvDsInferContextImpl::buildModel() <nvdsinfer_context_impl.cpp:1934> [UID = 1]: build engine file failed
0:08:17.545680634  9070     0x3f617730 ERROR                nvinfer gstnvinfer.cpp:632:gst_nvinfer_logger:<primary_gie> NvDsInferContext[UID 1]: Error in NvDsInferContextImpl::generateBackendContext() <nvdsinfer_context_impl.cpp:2020> [UID = 1]: build backend context failed
0:08:17.545766053  9070     0x3f617730 ERROR                nvinfer gstnvinfer.cpp:632:gst_nvinfer_logger:<primary_gie> NvDsInferContext[UID 1]: Error in NvDsInferContextImpl::initialize() <nvdsinfer_context_impl.cpp:1257> [UID = 1]: generate backend failed, check config file settings
0:08:17.546456543  9070     0x3f617730 WARN                 nvinfer gstnvinfer.cpp:841:gst_nvinfer_start:<primary_gie> error: Failed to create NvDsInferContext instance
0:08:17.546521285  9070     0x3f617730 WARN                 nvinfer gstnvinfer.cpp:841:gst_nvinfer_start:<primary_gie> error: Config file path: /home/jetson/work/Deep-Stream-ONNX/config/config_infer_custom_yolo.txt, NvDsInfer Error: NVDSINFER_CONFIG_FAILED
** ERROR: <main:658>: Failed to set pipeline to PAUSED

 

azure의 custom vision 의 README에 기재된 링크를 가보았는데

[링크 : https://github.com/Azure-Samples/customvision-export-samples]

 

onnx 포맷으로는 python과 c#만 제공하고

해당 사이트에서 python을 받아서 실행해보니 하나의 사진에 대해서 처리가 가능한 예제를 제공한다.

[링크 : https://github.com/Azure-Samples/customvision-export-samples/tree/main/samples/python/onnx]

[링크 : https://github.com/Azure-Samples/customvision-export-samples/tree/main/samples/csharp/onnx]

 

 

+

ssd deepstream 예제가 있는데

python 스크립트에 h264 elementary stream을 넣어주어야 한댄다

[링크 : https://github.com/NVIDIA-AI-IOT/deepstream_python_apps/tree/master/apps/deepstream-ssd-parser]

 

-h h264가 포인트 인 듯.

$ ffmpeg -f video4linux2 -s 320x240 -i /dev/video0 -vcodec libx264 -f h264 test.264

[링크 : https://stackoverflow.com/questions/27090114/what-does-elementary-stream-mean-in-terms-of-h264]

 

JVT NAL sequence, H.264 라는 타입으로 변경된 듯.

sample_0.h264: JVT NAL sequence, H.264 video @ L 31
sample_0.mp4:  ISO Media, MP4 v2 [ISO 14496-14]

 

Joint Video Team (JVT)
NAL: Network Abstraction Layer

[링크 : http://iphome.hhi.de/suehring/tml/JM%20Reference%20Software%20Manual%20(JVT-AE010).pdf]

 

+

sample_ssd_relu6.uff 파일은 ssd inception v2 기반 모델인가?

[링크 :  https://eva-support.adlinktech.com/docs/ssdnbspinception-v2-nbsp-nbsp-nbsp-nbspnbsp]

'embeded > jetson' 카테고리의 다른 글

deepstream triton server  (0) 2022.03.30
deepstream part.3  (0) 2022.03.29
jetson nano python numpy Illegal instruction (core dumped)  (0) 2022.03.29
deepstream onnx  (0) 2022.03.28
azure custom vision - precision, recall  (0) 2022.03.28
Posted by 구차니
embeded/jetson2022. 3. 29. 11:27

'embeded > jetson' 카테고리의 다른 글

deepstream part.3  (0) 2022.03.29
deepstream onnx part.2  (0) 2022.03.29
deepstream onnx  (0) 2022.03.28
azure custom vision - precision, recall  (0) 2022.03.28
flud nvidia cuda  (0) 2022.03.28
Posted by 구차니
embeded/jetson2022. 3. 28. 17:03

 

[링크 : https://towardsdatascience.com/how-to-deploy-onnx-models-on-nvidia-jetson-nano-using-deepstream-b2872b99a031]

git clone https://github.com/thatbrguy/Deep-Stream-ONNX.git
cd Deep-Stream-ONNX

wget https://github.com/onnx/models/blob/main/vision/object_detection_segmentation/tiny-yolov2/model/tinyyolov2-8.tar.gz
wget https://github.com/onnx/models/blob/main/vision/object_detection_segmentation/tiny-yolov2/model/tinyyolov2-8.tar.gz
# 구글 드라이브 다운로드

tar -xvf sample.tar.gz
tar -xvf tinyyolov2-7.tar.gz
cp tiny_yolov2/Model.onnx tiny_yolov2.onnx

cd custom_bbox_parser/
$ git diff
diff --git a/custom_bbox_parser/Makefile b/custom_bbox_parser/Makefile
index 5bab5a4..b764725 100644
--- a/custom_bbox_parser/Makefile
+++ b/custom_bbox_parser/Makefile
@@ -1,7 +1,8 @@
 CUDA_VER:=10
 SRCFILES:=nvdsparsebbox_tiny_yolo.cpp
 TARGET_LIB:=libnvdsinfer_custom_bbox_tiny_yolo.so
-DEEPSTREAM_PATH:=/home/nano/deepstream_sdk_v4.0_jetson
+#DEEPSTREAM_PATH:=/home/nano/deepstream_sdk_v4.0_jetson
+DEEPSTREAM_PATH:=/opt/nvidia/deepstream/deepstream-6.0

 ifeq ($(CUDA_VER),)
   $(error "CUDA_VER is not set")
diff --git a/custom_bbox_parser/nvdsparsebbox_tiny_yolo.cpp b/custom_bbox_parser/nvdsparsebbox_tiny_yolo.cpp
index c6251e5..0825e68 100644
--- a/custom_bbox_parser/nvdsparsebbox_tiny_yolo.cpp
+++ b/custom_bbox_parser/nvdsparsebbox_tiny_yolo.cpp
@@ -432,7 +432,7 @@ extern "C" bool NvDsInferParseCustomYoloV2Tiny(

     // Obtaining the output layer.
     const NvDsInferLayerInfo &layer = outputLayersInfo[0];
-    assert (layer.dims.numDims == 3);
+    assert (layer.inferDims.numDims == 3);

     // Decoding the output tensor of TinyYOLOv2 to the NvDsInferParseObjectInfo format.
     std::vector<NvDsInferParseObjectInfo> objects =

 

[링크 : https://github.com/thatbrguy/Deep-Stream-ONNX]

 

 

 *** DeepStream: Launched RTSP Streaming at rtsp://localhost:8554/ds-test ***

Opening in BLOCKING MODE
Opening in BLOCKING MODE

Using winsys: x11
WARNING: [TRT]: Detected invalid timing cache, setup a local cache instead
INFO: [Implicit Engine Info]: layers num: 2
0   INPUT  kFLOAT image           3x416x416
1   OUTPUT kFLOAT grid            125x13x13


Runtime commands:
        h: Print this help
        q: Quit

        p: Pause
        r: Resume

NOTE: To expand a source in the 2D tiled display and view object details, left-click on the source.
      To go back to the tiled display, right-click anywhere on the window.


**PERF:  FPS 0 (Avg)    FPS 1 (Avg)     FPS 2 (Avg)     FPS 3 (Avg)
**PERF:  0.00 (0.00)    0.00 (0.00)     0.00 (0.00)     0.00 (0.00)
** INFO: <bus_callback:194>: Pipeline ready

Opening in BLOCKING MODE
Opening in BLOCKING MODE
Opening in BLOCKING MODE
Opening in BLOCKING MODE
** INFO: <bus_callback:180>: Pipeline running



-------------------------------
0:00:00.369440298  8235     0x31571330 WARN                 nvinfer gstnvinfer.cpp:635:gst_nvinfer_logger:<primary_gie> NvDsInferContext[UID 1]: Warning from NvDsInferContextImpl::initialize() <nvdsinfer_context_impl.cpp:1161> [UID = 1]: Warning, OpenCV has been deprecated. Using NMS for clustering instead of cv::groupRectangles with topK = 20 and NMS Threshold = 0.5
ERROR: Deserialize engine failed because file path: /home/jetson/work/Deep-Stream-ONNX/config/../tiny_yolov2.onnx_b1_fp16.engine open error
0:00:01.781999412  8235     0x31571330 WARN                 nvinfer gstnvinfer.cpp:635:gst_nvinfer_logger:<primary_gie> NvDsInferContext[UID 1]: Warning from NvDsInferContextImpl::deserializeEngineAndBackend() <nvdsinfer_context_impl.cpp:1889> [UID = 1]: deserialize engine from file :/home/jetson/work/Deep-Stream-ONNX/config/../tiny_yolov2.onnx_b1_fp16.engine failed
0:00:01.782126640  8235     0x31571330 WARN                 nvinfer gstnvinfer.cpp:635:gst_nvinfer_logger:<primary_gie> NvDsInferContext[UID 1]: Warning from NvDsInferContextImpl::generateBackendContext() <nvdsinfer_context_impl.cpp:1996> [UID = 1]: deserialize backend context from engine from file :/home/jetson/work/Deep-Stream-ONNX/config/../tiny_yolov2.onnx_b1_fp16.engine failed, try rebuild
0:00:01.782165021  8235     0x31571330 INFO                 nvinfer gstnvinfer.cpp:638:gst_nvinfer_logger:<primary_gie> NvDsInferContext[UID 1]: Info from NvDsInferContextImpl::buildModel() <nvdsinfer_context_impl.cpp:1914> [UID = 1]: Trying to create engine from model files
0:01:43.015792426  8235     0x31571330 INFO                 nvinfer gstnvinfer.cpp:638:gst_nvinfer_logger:<primary_gie> NvDsInferContext[UID 1]: Info from NvDsInferContextImpl::buildModel() <nvdsinfer_context_impl.cpp:1947> [UID = 1]: serialize cuda engine to file: /home/jetson/work/Deep-Stream-ONNX/tiny_yolov2.onnx_b1_gpu0_fp16.engine successfully
0:01:43.196589822  8235     0x31571330 INFO                 nvinfer gstnvinfer_impl.cpp:313:notifyLoadModelStatus:<primary_gie> [UID 1]: Load new model:/home/jetson/work/Deep-Stream-ONNX/config/config_infer_custom_yolo.txt sucessfully
NvMMLiteOpen : Block : BlockType = 261
NvMMLiteOpen : Block : BlockType = 261
NvMMLiteOpen : Block : BlockType = 261
NvMMLiteOpen : Block : BlockType = 261
NVMEDIA: Reading vendor.tegra.display-size : status: 6
NVMEDIA: Reading vendor.tegra.display-size : status: 6
NVMEDIA: Reading vendor.tegra.display-size : status: 6
NVMEDIA: Reading vendor.tegra.display-size : status: 6
NvMMLiteBlockCreate : Block : BlockType = 261
NvMMLiteBlockCreate : Block : BlockType = 261
NvMMLiteBlockCreate : Block : BlockType = 261
NvMMLiteBlockCreate : Block : BlockType = 261
NvMMLiteOpen : Block : BlockType = 4
NvMMLiteOpen : Block : BlockType = 4
===== NVMEDIA: NVENC =====
===== NVMEDIA: NVENC =====
NvMMLiteBlockCreate : Block : BlockType = 4
NvMMLiteBlockCreate : Block : BlockType = 4
H264: Profile = 66, Level = 0
H264: Profile = 66, Level = 0
NVMEDIA_ENC: bBlitMode is set to TRUE
NVMEDIA_ENC: bBlitMode is set to TRUE
 

'embeded > jetson' 카테고리의 다른 글

deepstream onnx part.2  (0) 2022.03.29
jetson nano python numpy Illegal instruction (core dumped)  (0) 2022.03.29
azure custom vision - precision, recall  (0) 2022.03.28
flud nvidia cuda  (0) 2022.03.28
jetson nano deepstream  (0) 2022.02.10
Posted by 구차니
embeded/jetson2022. 3. 28. 15:59

ms azure의 custon vision 서비스(?)를 이용해서 학습을 시도하는데

"하나의 태그당 15개 이상의 이미지 필요" 라는 제약조건이 걸려있다.

 

학습 시간에 따라서도 다르게 나오긴 한데

4시간 학습 걸어놨는데 1시간 조금 넘어서 멈춘걸 보면

학습치가 수렴하면 자동 종료하게 해둔 듯 한다.

 

 

 

 

 

precision이야 정확도일 것 같고, recall 번역이 안되네 -_ㅠ

"옳을 것으로 예상되어진 모든 태그들 중에 올바르게 찾은 퍼센트"

 

precision은 결과값에 대한 true가 true 인 조건

recall은 원본 데이터의 true에 대한 결과의 true가 true인 조건

 

+

Recall이 낮아졌다가 다시 높아졌는데 어느게 좋은건가 찾아보니 Precision과 Recall도 둘다 높은게 좋은거라고

[링크 : https://sumniya.tistory.com/26]

 

다운로드 받으면 metadata_properties.json 파일이 존재하는데 (tflite, onnx, onnx float16 확인)

학습시 별다른 옵션이 없던걸 봐서는 azure custom vision은 SSD 알고리즘만 지원하는 듯.

{
    "CustomVision.Metadata.AdditionalModelInfo": "",
    "CustomVision.Metadata.Version": "1.2",
    "CustomVision.Postprocess.Method": "SSD",
    "CustomVision.Postprocess.Yolo.Biases": "[]",
    "CustomVision.Postprocess.Yolo.NmsThreshold": "0.0",
    "CustomVision.Preprocess.CropHeight": "0",
    "CustomVision.Preprocess.CropMethod": "NoCrop",
    "CustomVision.Preprocess.CropWidth": "0",
    "CustomVision.Preprocess.MaxDimension": "0",
    "CustomVision.Preprocess.MaxScale": "0.0",
    "CustomVision.Preprocess.MinDimension": "0",
    "CustomVision.Preprocess.MinScale": "0.0",
    "CustomVision.Preprocess.NormalizeMean": "[0.0, 0.0, 0.0]",
    "CustomVision.Preprocess.NormalizeStd": "[1.0, 1.0, 1.0]",
    "CustomVision.Preprocess.ResizeMethod": "Stretch",
    "CustomVision.Preprocess.TargetHeight": "320",
    "CustomVision.Preprocess.TargetWidth": "320",
    "Image.BitmapPixelFormat": "Rgb8",
    "Image.ColorSpaceGamma": "SRGB",
    "Image.NominalPixelRange": "Normalized_0_1"
}

 

'embeded > jetson' 카테고리의 다른 글

jetson nano python numpy Illegal instruction (core dumped)  (0) 2022.03.29
deepstream onnx  (0) 2022.03.28
flud nvidia cuda  (0) 2022.03.28
jetson nano deepstream  (0) 2022.02.10
jetson nano developer board(구형) 부팅 문제  (0) 2022.02.09
Posted by 구차니
embeded/jetson2022. 3. 28. 15:02

nvidia jetson nano 4GB

 

--- 과거 아키이빙 이미지 끌어옴

nvidia ion

[링크 : https://minimonk.tistory.com/4579]

 

8800GT 혹은 8600GT 추정

[링크 : https://minimonk.tistory.com/2116]

'embeded > jetson' 카테고리의 다른 글

deepstream onnx  (0) 2022.03.28
azure custom vision - precision, recall  (0) 2022.03.28
jetson nano deepstream  (0) 2022.02.10
jetson nano developer board(구형) 부팅 문제  (0) 2022.02.09
nvidia jetson nano 2gb / csi  (0) 2022.01.21
Posted by 구차니